
Towards algorithms for
reducible presentations
of sofic shifts

by Justin Cai

April 2020

A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor
of Science in the Department of Computer Science
at the University of Colorado Boulder

Abstract

Given an irreducible presentation of a sofic shift, it is well known that there is a

procedure that yields a presentation with the fewest vertices among all presenta-

tions of the shift in polynomial time. However, given a reducible presentation, the

previous procedure does not necessarily yield such a minimal presentation. If the

reducible presentation presents an irreducible shift, then an irreducible presenta-

tion that presents the whole shift itself can be found within this presentation, so one

could minimize these by these presentations by finding this component within the

presentation. However, without knowing in advance if presentation presented an

irreducible shift or not, this procedure would not work, so an algorithm for testing

that is desirable. In this thesis, we present progress towards such an algorithm.

i

Acknowledgements

Raf, if I didn’t take your theory of computation course, I probably would’ve never

gotten to the the level of appreciation and joy for mathematics and theoretical com-

puter science I have now (or at least taken a lot longer), so thank you for your class,

introducing me to symbolic dynamics, being willing to advise me, and being a great

advisor overall.

Jem and Josh, thank you for volunteering your time to be on my committee. It is

much appreciated!

STARBURTS1, thanks for being a great bunch of friends this semester (and for lis-

tening to me talk about theory of computation for three hours).

1Super Terrific Awesome Radical Brilliant Urban Really Semantic Technical Superstars

ii

Contents

1 Introduction 1

2 Preliminaries 3

3 Irreducibility 9

4 Subshift testing 13

5 Discussion and future work 18

iii

Chapter 1

Introduction

In an effort to to sharpen the dividing line between classical differential analysis and

abstract symbolic analysis used frequently in the study of recurrence and transitivity

in dynamical systems, Morse and Hedlund named the field of symbolic dynamics

in their eponymous 1938 paper [MH38]. Shift spaces (or simply shifts), the main

object of study in symbolic dynamics, are sets of unending sequences over a finite set

of symbols in which certain forbidden finite sequences (know as forbidden words)

are not allowed to appear in the unending sequences. If a shift space has a finite

set of forbidden words that describe it, then the shift space is known as a shift of

finite type (SFT). In addition to being characterized by a finite list of forbidden

words, SFTs also have a representation in a graphical form, in the sense that all

the unending sequences of SFTs can be described by reading off the vertices in

an infinite walk around a graph. Sofic shifts were introduced by [Wei73] as the

smallest class of shift spaces containing every SFT and which were closed under

factor codes. However, it was clear that sofic shifts were exactly the shifts described

by infinite walks around a labeled graph.1

The labeled graphs that described sofic shifts, referred to hereafter as presenta-

tions of a sofic shift, are not unique, in the sense that many different presentations

can present the same sofic shift. Fischer [Fis75] was interested in irreducible sofic

shifts (what he called transitive), and shows that such sofic shifts admit a unique

minimal deterministic presentation (with respect to number of vertices in the pre-

sentation). [JM94] further characterized these minimal presentations. Sofic shifts

1The word sofic is derived from the Hebrew word for finite [Lin+95], which an apt name as sofic
shifts generalize shifts of finite type while still having a finite representation though a labeled graph.
Additionally, a shift space is sofic iff it has a finite number of follower sets, which is closely related to the
Myhill-Nerode theorem from automata theory.

1

that are reducible (i.e. not irreducible) do not necessarily admit a unique mini-

mal presentation, which can be seen in [Jon96], where two presentations of a SFT

were given that had the smallest number of vertices among all presentation of the

SFT, but the presentations were distinct. In the same paper, Jonoska characterized

sofic shifts that had synchronizing deterministic presentations in terms of the syn-

tactic monoid of the language of the shift, and showed that any sofic shift having a

synchronizing deterministic presentation necessarily had a unique minimal one.

The only algorithms that exist for minimizing presentations of sofic shift seem to

be a well-known procedure that is essentially based on DFA minimization [HMU01;

Lin+95]. However, this algorithm is only guaranteed to yield the minimal presen-

tation when given an irreducible presentation (where irreducibility of a presenta-

tion is a property of the presentation being “connected”). Irreducible presentations

present irreducible shifts, but reducible presentations do not necessarily present

reducible shifts (i.e. a reducible presentation can present an irreducible shift). It

has been essentially noted in [Jon96; MR91; JM94] that presentations that present

irreducible sofic shifts contain an irreducible subgraph which present the whole

shift itself. Therefore, if you you knew that a presentation presented an irreducible

shift, a procedure to yield the minimal presentation would be to select the irre-

ducible subgraph that presents the shift, and then further minimizing that (if nec-

essary). However, an algorithm for deciding whether any presentation presents an

irreducible shift seems to be mentioned nowhere in the literature. In this thesis, we

work towards such an algorithm.

2

Chapter 2

Preliminaries

In this section we introduce basic concepts from symbolic dynamics. Definitions

and notation follow [Lin+95] closely.

Definition 2.1. Let A be a finite set. The full A-shift is the set AZ of all bi-infinite

sequences over A (i.e. functions from Z to A, hence the usual notation for the set

of all functions from Z to A). Elements in AZ are called points.

A word is a finite sequence of letters over some alphabet A. We use ε to denote

the empty word. The set of all words over A is denoted A∗. Note that ε ∈ A∗;
the set of all nonempty words over A is denoted A+ (so ε /∈ A+). Let x = (x i)i∈Z
be a bi-infinite sequence. For i ≤ j, the word from the ith coordinate to the jth
coordinate is denoted

x[i, j] ¬ x i x i+1 . . . x j .

Definition 2.2. Let F be a set of words over an alphabet A, called the forbidden
words. A shift space (or simply shift) is a subset XF of some full shift AZ such that

none of the forbidden words appear in any point of the shift space. That is,

XF ¬
�

(x i)i∈Z ∈AZ : ∀i, j ∈ Z, i < j x[i, j] /∈ F
	

.

If X and Y are shift spaces and X ⊆ Y , then we say X is a subshift of Y . We can

see that AZ is a shift space by taking F = ∅, so as every shift space is a subset of a

full shift, so shift spaces are sometimes synonymously referred to as subshifts.

Definition 2.3. Let X be a shift space. The language of X is the set

B(X) = {x[i, j] : x ∈ X , i, j ∈ Z, i < j}

of nonempty words that appear in some point in X .

3

Instead of specifying what words are forbidden in a shift space, we can charac-

terize shift spaces by their languages. If L ⊆ A+ is a set of nonempty words, then

we say L is factorial if for every word w ∈ L, then every nonempty subword is in L.

We say L is prolongable if there for every word w ∈ L, there are nonempty words

u, v ∈ L such that uwv ∈ L.

Theorem 2.4 ([Lin+95]). If L ⊆ A+ is a set of nonempty words, then L = B(X)
for some shift space X if and only if L is factorial and prolongable. Furthermore,

for any shift space, X = XA+\B(X), so two shift spaces are equal if and only if their

languages are equal.

The following theorem will be useful for our discussion and is well known, but

no reference was found for it, so we provide a proof.

Theorem 2.5. If X and Y are shift spaces, then X ⊆ Y if and only if B(X) ⊆ B(Y).

Proof. Suppose X ⊆ Y . If w ∈ B(X), then w occurs in some point x ∈ X . But x ∈ Y
as X ⊆ Y , so w occurs in some point in Y . Therefore, w ∈ B(Y).

Conversely, suppose B(X) ⊆ B(Y). If x ∈ X , then every word occurring in x is

in B(X). But B(X) ⊆ B(Y), so every word occurring in x is in B(Y), so x ∈ Y .

Definition 2.6. Let X be a shift space. If u, v ∈ B(X) and there is a word w ∈ B(X)
such that uwv ∈ B(X), then we say w joins u and v. If for every pair of words in

u, v ∈ B(X) there is a word w joining u and v, then we say X is irreducible. Otherwise,

we say X is reducible.

Example 2.7. A typical shift space we will see is the even shift. We define the even

shift to be the set of bi-infinite sequences over {0, 1} such that between any two 1’s,

there is an even number of 0’s. That is, the forbidden blocks are {102k+11 : k ≥
0}. The even shift is also irreducible, which can be easily seen after we introduce

presentations of sofic shifts.

Another shift space is the 010-shift, which are the bi-infinite sequences over

{0, 1} such that 1 only appears at most once. We can describe the shift using the

forbidden blocks {10k1 : k ≥ 0}. This shift space is reducible, as 1 is in the language,

but if there were a word joining 1 and 1, the the the resulting word would contain

a forbidden word, so there can be no word joining 1 and 1.

Definition 2.8. A graph1 G is a 4-tuple G = (V,E , i, t), where V is a finite set of ver-
tices, E is a finite set of edges, and i : E → V and t : E → V are functions assigning an

1In our discussion, a graph really means a directed multigraph; multiple edges between the same two
vertices and self loops are permitted.

4

initial and terminating vertex for each edge, respectively. For an arbitrary graph G,

let VG , EG , iG , and tG denote the graph’s vertices, edges, and initial and terminating

vertex functions, respectively.

Definition 2.9. Let G be a graph. A bi-infinite walk in G is a bi-infinite sequence

x over the edges of G such that t(x i) = i(x i+1) for all i ∈ Z. The set XG of all

bi-infinite walks on G (called the edge shift) is denoted

XG ¬
�

(x i)i∈Z ∈ EZ : ∀i ∈ Z t(x i) = i(x i+1)
	

.

Theorem 2.10 ([Lin+95]). If G is a graph, then XG is a shift space.

Let G be a graph. A path in G is a nonempty finite sequence of edgesπ= e1 . . . en

such that t(ei) = i(ei+1) for all i < n. If I is a vertex in G, we say a path starts at I
if i(e1) = I . Similarly, we say a path ends at I if t(en) = I .

Notice that every word in B(XG) is a path G, but every path in G is not necessarily

a word in B(XG). Call a vertex stranded if there is no edge starting at I or ending

at I . No bi-infinite walk can go through a stranded vertex, because a bi-infinite

path must always have a “next” or “previous” vertex, and stranded vertices are

exactly the vertices which have none. If G has no stranded vertices, then we call G
essential. Every non-essential graph can be made essential by removing the stranded

vertices, and the resulting graph will have still have the same edge shift. Then, if G
is essential, then every path in G is necessarily a word in B(XG). Thus, it simplifies

our discussion to work with essential graphs, as it allows us to paths and words in

the language of an edge shift synonymously.

If G is a graph and I and J are vertices in G, then we say J is reachable from I
if there is a path starting at I and ending at J . We say G is irreducible if, for every

pair of vertices I , J , I is reachable from J. Otherwise, we say G is reducible. Every

irreducible graph is necessarily essential. If G is irreducible, then it it not too hard

to see that XG is irreducible. However, as we will discuss in the next section XG is

not necessarily reducible if G is reducible.

Definition 2.11. A labeled graph G is a pair (G,L), where G is a graph and L : E →A
is the labeling function from the edges of G onto some finite alphabet A. We refer to

G as the underlying graph. As we did with graphs, if G is an arbitrary labeled graph,

then let VG ,EG , iG , and tG denote the vertices, edges, initial and terminating vertex

functions of the underlying graph. Additionally, let LG denote the labeling function

and AG denote the set of labels appearing in G (i.e. the image of LG).

If G is a labeled graph, then we will let G inherit properties of its underlying

graph. Specifically, we say G is essential if its underlying graph is essential, G is

5

irreducible if its underlying graph is irreducible, G is reducible if its underlying

graph is reducible, and so on.

Definition 2.12. Let G = (G,L) be a labeled graph. If x is a bi-infinite walk in G,

then the label of x is the bi-infinite sequence (ξi)i∈Z, where ξi = L(x i) for all i ∈ Z.
The set of all the labels of bi-infinite walks in G is denoted

XG ¬
�

(ξi)i∈Z : ξi = L(x i), x ∈ XG

	

.

Theorem 2.13 ([Lin+95]). If G is a labeled graph, then XG is a shift space.

If X is a shift space and X = XG for some labeled graph G, then we say X is a

sofic shift. We say G presents X , and will also refer to G as a presentation of X .

Let G be a labeled graph. If π = e1 . . . en is a path in G, then we will abuse

notation and define the label of the path L(π) ¬ w, where w = L(e1) . . .L(en), and

say that π presents w. Similar to graphs, every word in B(XG) is presented by some

path in G but every word presented by a path in G is not necessarily a word in B(XG),
unless G is essential.

Example 2.14. The even shift and 010-shift are both examples of sofic shifts, as

we can describe their points as bi-infinite walks on labeled graphs. The even shift

is presented by Figure 2.1a and the 010-shift is presented by Figure 2.1b. As the

underlying graph of Figure 2.1a is irreducible, the even shift itself is irreducible.

Definition 2.15. Let G = (G,L) be a presentation of a sofic shift X . For a vertex

I ∈ VG , the follower set of I is the set

FG(I)¬
�

L(π) : π ∈ B(XG), i(π) = I
	

.

For a word w ∈ B(X), the follower set of w is the set

FX (w)¬
�

u ∈ B(X) : wu ∈ B(X)
	

.

Let G and H be graphs. A graph isomorphism between G and H is a pair of

bijective functions ∂Φ : VG → VH and Φ : EG → EH such that for all e ∈ EG , we have

∂Φ(iG(e)) = iH(Φ(e)) and ∂Φ(tG(e)) = tH(Φ(e)); i.e. G and H are the same graphs

up to renaming the vertices and edges. Similarly, if G and H are labeled graphs, then

a labeled-graph isomorphism from G to H is a graph isomorphism (∂Φ,Φ) between

the underlying graphs of G and H such that LH(Φ(e)) = LG(e) for all e ∈ EG . We

say G and H are isomorphic if there is an isomorphism between them.

A minimal presentation of a sofic shift X is a presentation of X with the small-

est number of vertices among all presentations of X . We say a presentation is de-
terministic if for each vertex in the presentation, no two distinct edges starting at

6

1

0

0

(a)

0
1

0

(b)

1

1

0

0

0

0

(c)

1

1

00

0

(d)

Figure 2.1: Presentations of sofic shifts.

that vertex share the same label (i.e. the edges starting at that vertex are labeled

uniquely). A presentation is follower-separated no pair of distinct vertices have the

same follower sets (i.e. all the follower sets of the presentation are distinct).

Every sofic shift has a deterministic presentation, which borrows the idea of the

subset construction from automata theory [HMU01]. In fact, [Jon96] showed that

the minimal deterministic finite automata (DFA) accepting the language of a sofic

shift has the minimal presentation for the sofic shift as a subgraph of the DFA.

Additionally, every sofic shift has a follower-separated presentation. Any pre-

sentation can be made into a follower-separated by creating a graph from the equiv-

alence class of follower sets (i.e. two vertices in a presentation are equivalent if they

have the same follower set), and connecting any two equivalence classes if they have

an edge between any of the vertices between the equivalence classes [Lin+95]. We

call this process follower-separation.

Example 2.16. As the vertex in the upper right of Figure 2.1d is a vertex that has

two edges starting at it labeled 1, this presentation is nondeterministic, but still

presents the even shift.

Theorem 2.17 ([Lin+95] Fundamental theorem of minimal deterministic presen-

tations of irreducible sofic shifts). Let X be an irreducible sofic shift.

(i) Any minimal deterministic presentation of X is follower-separated and irre-

ducible.

7

(ii) Any two irreducible deterministic presentations of X that are also follower-

separated are isomorphic.

(iii) Therefore, any two minimal deterministic presentations of X are isomorphic.

(iv) Additionally, a deterministic presentation, up to isomorphism, is the unique

minimal deterministic presentation of X if and only if it is irreducible and

follower-separated.

The idea of follower-separation once again borrows ideas from automata the-

ory, as minimization of DFAs is done by creating a DFA from the equivalence class

of states (defined in a similar manner). However, DFA minimization always yields

the minimal DFA, but follower-separation does not necessarily yield a minimal pre-

sentation. Follower-separation is only guaranteed to give the minimal presentation

if the original presentation is irreducible ([Lin+95, Lemma 3.3.8]).

Example 2.18. The presentation in Figure 2.1c is an irreducible presentation of

the even shift but is not follower-separated, so by Theorem 2.17, it is not minimal.

The presentation Figure 2.1a is an irreducible follower-separated presentation of

the even shift, so by Theorem 2.17, it is minimal.

Definition 2.19. Let G be a presentation of a sofic shift X , I be some vertex in

G, and w ∈ B(X). If every path π in G that presents w ends at I , then we say w
synchronizes to I . We say that w is synchronizing for G if it synchronizes to some

vertex in G. If there is a word that synchronizes to I , then we say that the vertex I
is synchronizing. Finally, we denote S(G) as the set of all synchronizing words for

G.

8

Chapter 3

Irreducibility

Consider the presentation in Figure 3.1. The shift presented by subgraph induced

by I and J is the even shift, and every word presented by a path starting from K is

presented by some path starting at I or J . Hence, this presentation presents the even

shift. Additionally, it is also follower-separated as 01 ∈ F(K)\F(I), 1 ∈ F(K)\F(J),
and 1 ∈ F(I)\F(J). When do follower-separated reducible presentations present

irreducible shifts? We will first look at a simple class of reducible presentations.

I JK 1

0

0

1

0

Figure 3.1: A reducible, follower-separated presentation of the even shift

Given a graph and vertices I and J in the graph, we say I communicates with J
if and only if I is reachable from J and J is reachable from I . By saying a vertex is

always reachable from itself, it is routine to check that this defines an equivalence

relation. The equivalence classes are called irreducible components, as the subgraphs

induced by each class are irreducible.

Let G→H be an essential, deterministic, follower-separated presentation with

two irreducible components that induce two subgraphs, namely G and H, such that

there is exactly one edge starting in G and ending in H. Some properties of G→H
are that the vertices of G and H partition the vertices of G→H, both G and H are

essential, any vertex in H is reachable from any vertex in G→H, and no vertex in G
is reachable from any vertex in H.

9

G H

Figure 3.2: Representation of G→H.

Proposition 3.1. Every word u ∈ B(XG→H) can be extended on the right to a word

uw ∈ B(XG→H) that synchronizes to a vertex I in H.

Proof. Let u ∈ B(XG→H). As G→H is deterministic and follower-separated, then by

[Lin+95, Proposition 3.3.16], we can extend u on the right to uw ∈ B(XG→H) so

that uw synchronizes to some vertex J . As I is a vertex in H, I can be reached from

J , so let v be the label of a path from J to I . Then, uwv ∈ B(XG→H) and any path

presenting uwv must end at I , so uwv synchronizes to I .

Corollary 3.2. Every vertex in H is synchronizing for G→H.

Proof. For a vertex I in H, take any word u ∈ B(XG→H) and use Proposition 3.1 to

synchronize it to I . Hence, there is a word that synchronizes to I , so I is synchro-

nizing.

Lemma 3.3. If there exists a word u ∈ B(XG→H) such that u /∈ B(XH), then XG→H

is reducible.

Proof. By Proposition 3.1, we can extend u on the right to a word uw ∈ B(XG→H)
so that any path presenting uw synchronizes to a vertex I in H. We want to show

that there is no word joining uw and u. As uw synchronizes to I , then by [Lin+95,

Lemma 3.3.15], F(I) = F(uw). From the definition of irreducibility and follower

sets of words, we can see v is a word joining uw and u exactly when v ∈ F(uw) and

u ∈ F(uwv). For any word v ∈ F(I), there is some path labeled v starting at I and

ending at J for some vertex J in G→H. Clearly, J is a vertex in H as no vertex in G
is reachable from I , so F(J) ⊆ B(XH). But u /∈ B(XH), so u /∈ F(uwv). Thus, there

is no word joining uw and u, so XG→H is reducible.

Theorem 3.4. XG→H is irreducible if and only if XG→H = XH.

Proof. Suppose XG→H is irreducible, and let w ∈ B(XG→H). By Lemma 3.3, as XG→H

is irreducible, then w ∈ B(XH), so B(XG→H) ⊆ B(XH). By construction of G→H, we

have B(XH) ⊆ B(XG→H). Therefore, B(XG→H) = B(XH) soXG→H = XH. Conversely,

suppose XG→H = XH. As XH is irreducible, then so is XG→H.

Corollary 3.5. If XG→H is irreducible, then XG ⊆ XH.

10

Proof. By Theorem 3.4, if XG→H is irreducible, then XG→H = XH. As XG ⊆ XG→H,

then XG ⊆ XH.

Theorem 3.6. XG ⊆ XH if and only if no vertex in G is synchronizing for G→H.

Proof. Suppose XG * XH. Then, there is a word w ∈ B(XG) but w /∈ B(XH). We

can extend w to a word wu ∈ B(XG) such that wu is synchronizing for G. If every

path in G→H presenting wu ends in G, then wu is synchronizing for G→H (as every

path presenting wu would be a path in G). Otherwise, let π be any presenting wu
starting at some vertex in G and ending at a vertex in H. As w /∈ B(XH), there is no

path in H presenting w, so the label of any path starting with π does not end with

the word w. As π was arbitrary, then any path that starts in G and ends in H whose

label begins with wu does not end with w. But as XG is irreducible, wu ∈ B(XG),
and w ∈ B(XG), there is a word v such that wuvw ∈ B(XG). Therefore, any path in

G→H presenting this wuvw cannot end in H, so it must end in G and thus wuvw is

synchronizing for G.

Conversely, suppose there is a word w ∈ B(XG→H) that synchronizes to a vertex

in G. No path presenting this word can start in H as no vertex in G is reachable from

any vertex in H, so w /∈ B(XH). Clearly, w ∈ B(XG) as there is some path presenting

w that starts and ends in G, so B(XG) * B(XH).

Corollary 3.7. If XG→H is irreducible, then no vertex in G is synchronizing for G→H.

Theorem 3.8. XG→H = XH if and only if S(G→H) ⊆ S(H).

Proof. Suppose XG→H = XH. Let w ∈ B(XG→H) synchronize to some vertex I in

G→H. If π is some path in H presenting w, then it must end at I . By Corollary 3.7,

I cannot be a vertex in G, so it must be a vertex in H. Therefore, every path in H
presenting w ends at I , so S(G→H) ⊆ S(H) as the above holds for every word w that

is synchronizing for G→H.

Conversely, suppose S(G→H) ⊆ S(H). Let u ∈ B(XG→H). By Proposition 3.1, we

can extend u to a word uw ∈ B(XG→H) that synchronizes to some vertex I in G→H.

Hence, uw is synchronizing for G→H, so it is also synchronizing for H. But if uw
is synchronizing for H, then by definition, uw ∈ B(XH) and thus u ∈ B(XH) (as

B(XH) is factorial). Therefore, B(XG→H) ⊆ B(XH), so XG→H = XH.

Proposition 3.9. If w ∈ S(G→H) but w /∈ S(H), then w /∈ B(XH).

Proof. As w ∈ S(G→H), there is a vertex I in G→H such that every path in G→H
presenting w ends at I . If w /∈ S(H), then either w /∈ B(XH) or for every vertex J
in H there is a path in H that presents w but does not end at J . Hence if the latter

11

condition were true, then this implies there is a path in H that presents w and does

not end at I . But this path is also in G→H and presents w, so it should end at I ,
which is a contradiction. Therefore, w /∈ B(XH).

12

Chapter 4

Subshift testing

In the previous section, we posited that if XG→H is irreducible, then XG is a subshift

of XH (Corollary 3.5). Although this condition is not sufficient for irreducibility

(for example, Figure 2.1b, the presentation of the 010-shift), algorithmically, we

will show there is a polynomial-time algorithm for deciding this, which gives a di-

rection in looking for a characterization of irreducibility conditional on this subshift

property.

Let G be a deterministic presentation and I be a vertex in G. As every edge

starting at I is labeled uniquely, we can see that every path starting at I is also

labeled uniquely. That is to say, for paths π and τ both starting at I , if L(π) =
L(τ), then π = τ. We can define a partial transition function δG : VG ×A∗G → VG

with δG(I , w) ¬ J if there is a path π labeled w starting at I and ending at J and

δG(I ,ε) = I for all I . However, if there is no path labeled w starting at I , then

δG(I , w) is not defined, so in this case, we will sayδG(I , w)¬ 0, where 0 is a constant

distinct from the vertices of G. Additionally, we will define δG(0, w) = 0. Finally,

define the subset transition function ∆G : P(V)×A∗G → P(V) with ∆G(S, w) ¬ {J ∈
VG : J 6= 0 and δG(I , w) = J for some I ∈ S} for all subsets S of vertices of G.

Proposition 4.1. Let G be an essential, deterministic presentation, and I and J be

vertices in G. The following properties of the transition function are true:

(i) w ∈ F(I) if and only if δG(I , w) 6= 0

(ii) w ∈ B(XG) if and only if ∆G(VG , w) 6=∅
(iii) δG(I , uv) = δG(δG(I , u), v) for all vertices I in G and u, v ∈A∗G
(iv) ∆G(S, uv) =∆G(∆G(S, u), v) for all subsets of vertices S of G and u, v ∈A∗G

Proof. Note that w ∈ F(I) exactly when there is a path labeled w starting at I , so

13

(i) follows evidently from the definition of δG . Similarly, w ∈ B(XG) exactly when

w ∈ F(I) for some vertex I in G, so (ii) follows from the definition of ∆G .

For (iii), let u, v ∈ A∗G . If δG(I , uv) 6= 0, then there is a unique path π =
e1 . . . en labeled uv starting at I and ending at J . As uv = L(e1) . . .L(en), then

for nonempty v, we can see that there is some i such that u = L(e1) . . .L(ei) and

v = L(ei+1) . . .L(en) (for v = ε, what we are trying to show follows trivially). Let

ρ1 = e1 . . . ei and ρ2 = ei+1 . . . en. As ρ1 is a path starting at i(e1) and ending at t(ei)
labeled u, δG(I , u) = t(ei). Similarly, as ρ2 is a path starting at t(ei) and ending at

J , δG(t(ei), v) = J . Therefore, δG(δG(I , u), v) = J . As there is a path labeled uv
starting at I and ending at J , then δG(I , uv) = J .

If δG(I , uv) = 0, then there is no path labeled uv starting at I . If there is no

path labeled u starting at I , then δG(δG(I , u), v) = δG(0, v) = 0. Otherwise, if there

is a path labeled u starting at I , then there must be no path labeled v starting at

δG(I , u), as otherwise, δG(δG(I , u), v) 6= 0 and then δG(δG(I , u), v) = δG(I , uv) 6=
0. Therefore, δG(δG(I , u), v) = 0, which completes the proof for (iii). An similar

argument to (iii)’s proof can be done applied to (iv).

Definition 4.2. Let G be an essential, labeled graph. The G kill state graph with
alphabet A is the labeled graph G0 taking the same vertices and edges as G with an

additional vertex 0 and edges such that for each a ∈A and vertex I in G, if there is

no edge starting at I labeled a, then there is an edge in G0 between I and 0 labeled

a. Additionally, for each a ∈A, there is an edge from 0 to 0.

From the definition of G0, we can see that for all vertices I in G, w ∈ F(I) if and

only if there is no path in G0 labeled w starting at I and ending at 0.

Definition 4.3. Let G and H be labeled graphs. The label product of G and H is the

labeled graph G ∗H such that if there is an edge e1 in G between I1 and J1 and an

edge e2 in H between I2 and J2 with LG(e1) = LH(e2), then there is an edge in G∗H
between (I1, I2) and (J1, J2) labeled LG(e1) = LH(e2).

From the definition of G ∗H, we can see that there is a word w and paths π in

G and τ in H both labeled w with π starting at I1 and ending at J1 and τ starting

at I2 and ending at J2 if and only if there is a path in G ∗H starting at (I1, J1) and

ending at (I2, J2).
With these two graph constructions, we can see that for essential presentations

G and H and for a vertex I in G and a vertex J in H, checking F(I) ⊆ F(J) reduces

to checking the existence of a path in G ∗H0 from (I , J) to any vertex in the set

{(K , 0) : K ∈ VG}. With this, we can introduce Algorithm 1, which given an ir-

reducible deterministic presentation G and an essential deterministic presentation

14

H, tests whether G presents a subshift of the shift H presents. From a high level,

the algorithm takes a vertex in G and a vertex in H and tries to find a word in the

follower set of the vertex in G but not in the follower set of the vertex in H. If it

finds this word, the algorithm transitions the vertex in G forward using the word

and transitions a subset of vertices in H forward using the word. If the size subset

of vertices from H ever reaches 0, then the algorithm has found a word in B(XG)
not in B(XH). Otherwise, if it does not find this word, then every word in B(XG)
must be in B(XH).

Algorithm 1 Subshift testing

Require: G is an irreducible and deterministic presentation, H is an essential and

deterministic presentation

1: procedure IS_SUBSHIFT(G,H)

2: I ← any element in VG

3: X ← VH

4: w← ε
5: repeat

6: J ← any element in X
7: find a word u such that δG(I , u) 6= 0 and δH(J , u) = 0

8: if u exists then

9: w← wu
10: I ← δG(I , u)
11: X ←∆H(X , u)
12: if X =∅ then

13: return false

14: end if

15: end if

16: until u does not exist

17: return true

18: end procedure

Lemma 4.4. If I0 is the value of I before entering the loop on lines 5-16, the in-

variants

(i) δG(I0, w) = I

(ii) I 6= 0

(iii) ∆H(VH, w) = X

hold before the beginning of each iteration the loop. Additionally, the loop always

15

terminates.

Proof. Clearly, I = I0 and w= ε before entering the loop, so∆G(I0, w) = δG(I ,ε) =
I . As I0 ∈ VG , we have that I 6= 0. Finally, as X = VG before entering the loop,

∆H(VH, w) =∆H(X ,ε) = X , so the invariants hold before entering the loop.

Suppose the invariants were true before the current iteration of the loop and I ,
J , w, and X had the values In, Jn, wn and Xn, respectively. Furthermore, suppose

the loop does not exit after the current iteration. Because of this, then the algorithm

must enter the if statement on line 8 (and not enter the if statement on line 12),

so there is a word u such that δG(In, u) 6= 0 and δH(Jn, u) = 0. We can see that

w = wnu, I = δG(In, u), and X = ∆H(Xn, u) at the end of the current iteration, so

from this, we can see

δG(I0, w) = δG(I0, wnu) = δG(δG(I0, wn), u) = δG(In, u) = I

and similarly,

∆H(VH, w) =∆H(VH, wnu) =∆H(∆H(VH, wn), u) =∆H(Xn, u) = X .

Therefore, all the invariants hold before the next iteration of the loop. Finally, note

that as δH(Jn, u) = 0 and Jn ∈ X , |X | is strictly less than |Xn|. This guarantees the

loop terminates as if the exit condition is never true, then |X | = 0 will be true for

some iteration so X =∅ and the algorithm exits on line 13.

Theorem 4.5. Algorithm 1 returns true if and only if XG ⊆ XH.

Proof. Suppose the algorithm returned false. If so, then it exited at line 13, so we

know X = ∅. By Lemma 4.4, δG(I0, w) = I 6= 0 so w ∈ B(XG) and ∆H(VH, w) = ∅
so w /∈ B(XH). Therefore, XG * XH.

Conversely, suppose XG * XH. Then, there is a word w ∈ B(XG) but w /∈ B(XH).
As w ∈ B(XG), then δG(I∗, w) 6= 0 for some vertex I∗ in G, and as w /∈ B(XH),
then δH(J∗, w) = 0 for all vertices J∗ in H. Therefore, for any value of I , as G is

irreducible, there is a path π starting at I and ending at I∗, so

δ(I ,L(π)w) = δG(δG(I ,L(π)), w) = δG(I
∗, w) 6= 0

and for any value of J , δH(J ,L(π)w) = δH(δH(J ,L(π)), w) = ∅. Hence, the al-

gorithm can always find a word u on line 7. If the algorithm picks u to be L(π)w,

then the algorithm terminates, as ∆H(VH,L(π)w) = ∅. If not, then as discussed

in Lemma 4.4, the the current value of |X | is strictly less than the previous value of

|X |. Therefore, as the algorithm can always find a word u on line 7, then |X | = 0

eventually and thus will return false eventually.

16

Theorem 4.6. Algorithm 1 can be computed in O(|VG | · |VH|3 + |EG | · |EH| · |VH|)
time.

Proof. As |X | goes down by at minimum once every iteration of the loop, and |X |=
O(|VH|), the loop repeats O(|VH|) times. To compute line 7, one can construct the

graph G ∗H0 and and determine if there is a path from (I , J) to any vertex in the

set {(K , 0) : K ∈ VG} using, say, a depth-first search. As |VG∗H0 |= O(|VG | · |VH|) and

|EG∗H0 | = O(|EG | · |EH|), then with depth-first search, this step can be computed in

O(|VG | · |VH| + |EG | · |EH|) time. As |u| = O(|VG | · |VH|), computing δG(I , u) takes

O(|VG | · |VH|) time. Similarly, computing ∆H(X , u) is reduces to computing δH at

most |X | times, so this can be computed in O(|VG | · |VH|) ·O(|VH|) = O(|VG | · |VH|2)
time. In total, this is

O(|VH|) ·
�

O(|VG | · |VH|+ |EG | · |EH|) +O(|VG | · |VH|) +O(|VG | · |VH|2)
�

= O(|VH|) ·O(|VG | · |VH|2 + |EG | · |EH|)

= O(|VG | · |VH|3 + |EG | · |EH| · |VH|).

17

Chapter 5

Discussion and future work

Although the algorithm does not fully solve the problem of deciding the irreducibil-

ity problem, it does shed some light on a general minimization procedure. For a

G→H-like graph, if Algorithm 1 returns false on inputs G and H, then we actually

know the presentation is synchronizing, meaning that every vertex is synchroniz-

ing. As such, since G→H is follower-separated, then by [Jon96, Corollary 5.4], it is

minimal.

Looking forwards, determining when XG→H is irreducible when XG ⊆ XH intu-

itively seems to be linked with how to check if all words coming from G link up

“properly” with H. For example, in Figure 3.1, this it is simple to see that G links up

with H properly. On the contrary, the presentation in Figure 5.1 is similar to Fig-

ure 3.1 in that XG ⊆ XH, but connects to the wrong place in H, and fails to present

the even shift, as it introduces the word 101 into the language.

1

0

0

1
0

Figure 5.1

The results here are likely to be easily extended to presentations with arbitrarily

many irreducible components. In fact, [Jon96] notes that for any presentation of an

irreducible sofic shift, the subgraph induced by the synchronizing vertices presents

the whole shift. If given an arbitrary presentation that presents an irreducible shift,

then to minimize it, one would need to find a synchronizing word and then identify

the irreducible component it synchronizes to. Although not explicitly discussed

18

here, finding a synchronizing word should be doable in polynomial-time with a

modification to [Epp90]’s algorithm for finding a synchronizing word for DFAs.1

Subshift testing can also be used for partial testing of the irreducibility of the shift

a presentation presents. As each shift presented by an irreducible component is

a subshift of the shift the whole presentation presents, it is easy to see that if a

presentation presents an irreducible shift, then it is necessary that each irreducible

component present a subshift of the synchronizing component.

Finally, the hardness of the general problem of minimization seems to have not

been investigated. Those familiar with automata theory can see that presentations

of sofic shifts are closely related to nondeterministic finite automata (NFA), as such

presentations can be interpreted as NFAs by making the set of start states all the

vertices of the presentation and every state a final state. If we restrict ourselves to

deterministic presentations, then the only nondeterminism in the interpreted NFA

is the multiple start states. In [HSY01] and [Mal04], minimization of a variant of a

DFA that allows multiple start states (MDFA) is shown to be PSPACE-complete in

the former for the general case and NP-complete in the latter for a restricted case.

Every presentation of a sofic shift gives a MDFA, but only ones where every state is

a final state. Further investigation should be done to see if this restriction affects

the hardness of minimization.

1Synchronizing words for DFAs, also known as reset words, differ slightly from synchronizing words
for presentations as the transition function for DFAs is total to begin with, so the action of taking the
transition of the reset word takes you to the synchronizing state no matter where you start, while for
presentations, the action of taking the transition of the synchronizing word either brings you to 0 or the
synchronizing state.

19

Bibliography

[MH38] Marston Morse and Gustav A Hedlund. “Symbolic dynamics”. In: Amer-
ican Journal of Mathematics 60.4 (1938), pp. 815–866.

[Wei73] Benjamin Weiss. “Subshifts of finite type and sofic systems”. In: Monat-
shefte für Mathematik 77.5 (1973), pp. 462–474.

[Fis75] Roland Fischer. “Sofic systems and graphs”. In: Monatshefte für Mathe-
matik 80.3 (1975), pp. 179–186.

[Epp90] David Eppstein. “Reset sequences for monotonic automata”. In: SIAM
Journal on Computing 19.3 (1990), pp. 500–510.

[MR91] Brian H Marcus and Ron M Roth. “Bounds on the number of states in

encoder graphs for input-constrained channels”. In: IEEE transactions
on information theory 37.3 (1991), pp. 742–758.

[JM94] Natasa Jonoska and Brian Marcus. “Minimal presentations for irreducible

sofic shifts”. In: IEEE transactions on information theory 40.6 (1994),

pp. 1818–1825.

[Lin+95] Douglas Lind et al. An introduction to symbolic dynamics and coding.

Cambridge university press, 1995.

[Jon96] Nataša Jonoska. “Sofic shifts with synchronizing presentations”. In: The-
oretical Computer Science 158.1-2 (1996), pp. 81–115.

[HSY01] Markus Holzer, Kai Salomaa, and Sheng Yu. “On the state complexity

of k-entry deterministic finite automata”. In: Journal of Automata, Lan-
guages and Combinatorics 6.4 (2001), pp. 453–466.

[HMU01] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. “Introduction

to automata theory, languages, and computation”. In: Acm Sigact News
32.1 (2001), pp. 60–65.

[Mal04] Andreas Malcher. “Minimizing finite automata is computationally hard”.

In: Theoretical Computer Science 327.3 (2004), pp. 375–390.

20

	Introduction
	Preliminaries
	Irreducibility
	Subshift testing
	Discussion and future work

